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Abstract

Contrastive learning methods have gained traction in
recent years, particularly in supervised contrastive learn-
ing (SCL) in which label information boosts performance.
In this work, we compare popular loss functions in SCL
and analyze the impact on network performance from the
choice of loss functions, architecture modifications, and
data augmentation. We find that SupCon loss introduced by
Khosla et al. achieves the best accuracy of 91.40% across
the loss functions we consider, and triplet loss and tradi-
tional cross entropy loss are only marginally worse. We
do not observe significant performance changes by adding
a projector or a normalization layer. Data augmentation
improves performance of SCL in a meaningful way. Vi-
sualization shows SCL without data augmentation gener-
ates tighter and more distinct clusters than standard super-
vised learning, suggesting it may better suit tasks for which
data augmentation is more challenging. Our code repos-
itory is at https://github.com/Dongzhikang/
cs7643_deep_learning_project.

1. Introduction/Background/Motivation
Contrastive learning, a discriminative approach, aims to

learn an embedding space in which raw input data are trans-
formed such that similar samples become close together
while dissimilar ones are far apart, thus extracting abstract
yet meaningful representations. It has mainly been applied
to self-supervised representation learning, leading to state
of the art performances in transfer learning for some down-
stream computer vision tasks [1, 22, 7, 19, 18, 6, 5, 11, 13,
10, 15, 17]. Contrastive learning is also widely used in nat-
ural language processing tasks. Kim et al. redesigned con-
trastive learning to improve BERT [9]. Since there is no
label information, the common idea in these works is to pro-
duce a positive pair between different augmentations of the
same image and negative pairs between different images.
Using a contrastive loss function, the model then learns to
pull together positive pairs and push apart negative pairs. In
this work, we explore contrastive learning in a supervised

setting by implementing the paper Supervised Contrastive
Learning [8], in which a new loss termed SupCon was intro-
duced. SupCon allows for multiple positives, and therefore
can incorporate label information in the loss function (pos-
itive pairs are formed between augmentations of the same
image or of the same label).

Since there is already a PyTorch implementation of the
supervised contrastive learning (SCL) framework (https:
//github.com/HobbitLong/SupContrast), we
aim to expand their work by performing experiments on
various aspects of design choices, including the loss func-
tion, normalization on the embedding, data augmentation,
and projector architecture. By doing so, we expect to gain a
deeper understanding of design choices of contrastive learn-
ing frameworks, supervised and self-supervised.

Contrastive loss is one of the key differences between
contrastive methods and other representation learning. In
the following section, we will discuss the major contrastive
loss functions related to SupCon.

1.1. Pair loss

L = 1(yi = yj)||zi−zj ||22+1(yi ̸= yj)max(0,m−||zi−zj ||2)2
(1)

The original “contrastive loss” was introduced by
Chopra et al. [2] and later reformulated by Hadsell et al. [4].
The term “contrastive loss” was originally referring to this
specific loss but over time morphed into a general class of
loss functions used for contrastive learning. To avoid con-
fusion, we will refer to it as “pair loss”. Pair loss takes one
pair of embedding vectors (zi, zj). If the pair is a positive
pair (from the same class), then the loss is essentially their
Euclidean distance. If the pair is a negative pair (from dif-
ferent classes), then the loss is essentially a hinge loss with
a margin m. After training same-class samples are pushed
closer and different-class samples are pushed apart.

1.2. Triplet loss

L = max(0, ||zi − zj ||22 − ||zi − zk||22 +m) (2)
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Triplet loss operates on a triplet of embedding vectors
(anchor zi, positive zj , negative zk) with one positive pair
and one negative pair. In the original paper [21], the goal
is to learn a distance metric that keeps k-nearest neighbors
from the same class close while keeping samples from dif-
ferent classes separated by a large margin. The selection
of negative samples zk is crucial to model performance and
convergence [14]. If the negative is already more than a
margin away from the anchor than the positive, the model
does not need to learn anything. If the negative is closer to
the anchor than the positive, it is too hard for the model to
learn a good distance metric. The ideal situation is when the
negative lies within the margin.

1.3. N-pair loss

L = −Σi∈Blog
exp(zi · zj)

Σk∈B,k ̸=iexp(zi · zk)
(3)

To address the problem with pair loss and triplet loss
where there is limited interaction between samples neces-
sitating expensive hard negative mining, N-pair loss gener-
alizes triplet loss to include comparison with multiple neg-
ative samples [16]. Given a batch B of size N+1 containing
one anchor (zi), one positive (zj), and N-1 negative sam-
ples, N-pair loss is essentially the negative log of the soft-
max function of each positive pairs scored by their dot prod-
uct. With this formulation, training with N-pair loss pushes
the N-1 negative samples away simultaneously instead of
one at a time as with triplet loss.

1.4. NT-Xent loss

L = −Σi∈Blog
exp(zi · zj/τ)

Σk∈B,k ̸=iexp(zi · zk/τ)
(4)

NT-Xent loss is an extension of N-pair loss with the addi-
tion of the temperature parameter (τ ) to scale the dot prod-
ucts (cosine similarities if using normalized embedding vec-
tors). The addition of the temperature parameter effectively
weighs different samples, and an appropriate temperature
can help the model learn from hard negatives. In SimCLR
where NT-Xent loss is coined [1], a set of N random sam-
ples is augmented to 2N, each being a “view” of the original
sample. Note in this “multiviewed batch” B of 2N samples,
for each anchor zi, there is 1 positive pair and 2N - 2 nega-
tive pairs. The denominator has a total of 2N - 1 terms (the
positive and negatives).

1.5. SupCon loss

L = −Σi∈B
1

|Bi|
Σj∈Bi

log
exp(zi · zj/τ)

Σk∈B,k ̸=iexp(zi · zk/τ)
(5)

Figure 1. Architecture of the standard supervised classification
framework (top) and SCL framework (bottom)

Finally, built upon NT-Xent loss, SupCon loss allows
multiple positive and negative samples in the multiviewed
batch, leveraging class label information. Here Bi = {j ∈
B : yj = yi, j ̸= i} contains samples belonging to the
same class distinct from i, and |Bi| is its cardinality. In-
cluding more positive samples into the set leads to improved
results, outperforming SimCLR (NT-Xent loss) and super-
vised classification with cross entropy (CE) loss.

2. Approach
Figure 1 shows the architecture of the SCL framework

compared to a standard supervised learning framework.
Given a batch of input data, the approach is first to apply
data augmentation twice to obtain two copies of the batch.
Both copies are then forward propagated through the en-
coder network (ResNet-50) to obtain a 2048-dimensional
embedding. In Stage 1 (pretraining), this embedding is
further propagated through the projector network (2-layer
MLP) and then the normalized output (128-dimensional) is
used to compute the SupCon loss. During Stage 2 (infer-
ence), the embedding h from the encoder network is frozen
and propagated through a linear layer to make a class pre-
diction. For standard supervised classification, a ResNet-50
is used on augmented data. We followed the SupCon imple-
mentation on https://github.com/HobbitLong/
SupContrast with minimal tweaks to make it work on
our end, which means we used their augmentation strate-
gies (resized crop, horizontal flip, color jitter, and grayscale
for SCL, and resized crop and horizontal flip for supervised
learning) and optimizer (SGD with momentum).

In addition to the basic SCL framework, we are inter-
ested in experimenting with the following: 1) Explore all
contrastive losses mentioned in Section 1 to compare with
SupCon, including pair loss, triplet loss, N-pair loss, and
NT-Xent loss. 2) SimCLR [1] introduced a projection head
on top of the base neural network encoder and the SupCon
paper inherited this architecture but did not experiment with
different architectures of the projection network. We plan
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Batch size Learning rate
0.01 0.02 0.05 0.1 0.2 0.5 1

128 85.00 87.46 88.62 87.68 84.62 79.92 71.09
256 85.61 85.86 88.81 88.17 87.81 84.96 78.49
512 84.28 83.97 87.27 85.30 87.16 87.01 82.44

1024 72.80 74.63 80.57 81.61 86.95 84.63 81.70

Table 1. Validation accuracy using standard CE loss across various learning rates and batch sizes

to evaluate the effect of the projector by applying differ-
ent architectures (no projection vs linear projection vs sim-
ple MLP non-linear projection). 3) Evaluate the effect of
normalization on the encoder network and the projection
network. Normalization has been shown to improve down-
stream classification accuracy [14, 20]. The SupCon paper
normalized the output of the projector but not the output of
the encoder. We tested both networks with and without nor-
malization. 4) Evaluate the effect of data augmentation. To
create positive samples, self-supervised contrastive learn-
ing relies on data augmentation techniques (cropping, color
distortion, Gaussian blurring, etc.), which are often used in
computer vision. The SupCon paper, although leveraging
label information for contrastive learning, still used aug-
mented data to form positive samples. We are interested
in removing data augmentation in the contrastive learning
pretraining stage so that our approach may be applied to
additional realms (e.g., tabular data).

The dataset we used is the standard CIFAR-10. Ini-
tially we proposed to use CIFAR-100, but after running SCL
on CIFAR-100, we realized our computational power was
too limited to learn a good representation of CIFAR-100.
Therefore, we used CIFAR-10 throughout the project. We
trained for 40 epochs for each model as we feel it is a good
trade-off between performance and training time. As a re-
sult, our accuracies were not as high as in the SupCon paper.
We could always train for more epochs to get better models
(the SupCon paper used 350 epochs for ResNet-50 mod-
els) but to have the best possible models is not our learning
goal. Note that with 40 epochs, no learning rate decay was
applied.

3. Experiments and Results
3.1. Supervised contrastive learning vs supervised

learning

Given that we started with a different epoch and a dif-
ferent dataset from the SupCon paper, our first task was to
tune the hyperparameters to establish baseline accuracies.
As mentioned in Section 2 we fixed our epoch at 40 due to
the limitation on our computational power, as training and
tuning the networks require substantial usage of GPU for
an extended amount of time to fit into the project timeline.
However, we do not believe this limitation is likely to alter

the conclusion of our experiments – we observed a slow-
down in improvements in accuracy at epoch 40, and the ac-
curacy differences were relatively large across most of our
comparison results.

We explored various combinations of learning rates and
batch sizes and applied them to the standard supervised
learning network with CE loss (Table 1). Interestingly, we
observed the best validation accuracy when learning rate =
0.05 and batch size = 256, and performance deteriorated
with larger batch sizes or higher learning rates. Our optimal
batch size was smaller than that from the SupCon paper,
possibly due to the relatively simpler dataset we used.

For the SupCon network, learning rates and batch sizes
were also the first set of hyperparameters we explored. As
described in Section 2, SupCon first learns a feature repre-
sentation, which is frozen at inference time and fed into a
linear layer for classification. The implementation allows
flexibility to have different hyperparameters in representa-
tion learning and linear classifier, but we applied the same
set of hyperparameters across both stages for consistency.
We observed that the best validation accuracy was achieved
at batch size 256 and learning rate of 0.05 (Table 2).

With this insight, we moved on to testing the tempera-
ture τ in SupCon loss. The SupCon paper showed that τ
at 0.1 was optimal with ImageNet and ResNet-50 encoder,
which was what we used as the default. Temperature has
an important role in SupCon learning because of its effects
on smoothness and hard positives/negatives. We performed
empirical testing on CIFAR-10 around 0.1, and accuracy
peaked when τ = 0.15 (Table 3).

Overall all of our tuning, SupCon achieved an accuracy
of 91.40%, much higher than the 88.81% accuracy achieved
by standard supervised learning framework. This conclu-
sion is consistent with the SupCon paper, but we observed
a much larger difference between the two frameworks. It
is possible that SupCon trains more efficiently, and the gap
may narrow as epoch becomes sufficiently large.

Additionally, we found both standard supervised learn-
ing and SupCon networks achieved the best performances
at the same learning rate and batch size. This observation
suggests that this set of hyperparameters may be the best
combination for the given dataset and base architecture de-
spite some variations in loss functions and layer construc-
tion, and we will use this setup throughout the remainder
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Batch size Learning rate
0.05 0.1 0.2 0.5

256 90.95 90.30 89.39 87.33
512 89.33 90.49 90.45 89.21

Table 2. Validation accuracy for SupCon across various learning
rates and batch sizes

Temperature 0.07 0.10 0.15 0.20
Accuracy 89.18 90.95 91.40 91.31

Table 3. Validation accuracy for SupCon with varying tempera-
tures

Loss function Accuracy
CE 88.81

SupCon 90.95
SimCLR (NT-Xent) 75.54

N-pair 59.42
Triplet 90.03

Pair 22.62

Table 4. Validation accuracy using different loss functions

evaluations (but keeping the default temperature 0.1).

3.2. SupCon vs NT-Xent vs N-pair vs triplet vs pair
losses

To compare SupCon with other contrastive loss func-
tions, we replaced SupCon loss with pair, triplet, N-pair, or
NT-Xent losses. In Table 4, results for supervised learning
with CE loss and SCL with SupCon are copied from Section
3.1. Self-supervised learning using NT-Xent and N-pair
losses performed significantly worse than CE or SupCon,
likely due to insufficient training at 40 epochs. For triplet
(with semi hard negative mining) and pair losses, we used
default settings on the miner. While triplet loss produced a
comparable result as SupCon, pair loss performed poorly,
emphasizing the importance of positive/negative data min-
ing. We noticed that except for CE supervised learning,
all contrastive learning curves are almost flat (Figure 2).
This makes sense because the evaluation stage (Stage 2) is
only a linear classifier. If we get a good embedding from
contrastive learning (Stage 1), we could use as few as 1-2
epochs to train the classifier to get good results. The down-
side is that Stage 1 takes about 5 times longer to train than
CE supervised learning.

We projected the embeddings learned onto a 2-
dimensional space by PCA and t-SNE to see if the mod-
els learned any meaningful representations during training
(Figure 3). For CE supervised learning, it is the output be-
fore the last fully connected layer. For all contrastive learn-
ing losses, it is the output h of the encoder during pretrain-
ing. PCA projections generally show overlapping clusters

Figure 2. Learning curve (validation accuracy) of using different
loss functions on CIFAR-10 image classification. Cross entropy
(CE) is used for supervised learning. All others are used for con-
trastive learning.

of the labels, even for SupCon whose embedding resulted
in the best classification accuracy. This is expected as PCA
only tries to maximize the variance of the data. T-SNE, on
the other hand, preserves pair-wise distances of the data. We
saw 10 clusters of labels using t-SNE to project the CE em-
bedding, and even tighter clusters with SupCon and triplet
loss embedding. This means that compared to standard su-
pervised learning using CE, SCL (using SupCon or triplet
loss) indeed learned a more distinctive embedding between
the labels, which helped the Stage 2 linear classifier get a
higher accuracy. All other contrastive learning losses (i.e.,
pair, N-pair, and NT-Xent) did not learn embeddings that
can be mapped to distinctive 2-dimensional clusters using
t-SNE, consistent with their inferior classification accura-
cies.

3.3. No projector vs linear projector vs MLP pro-
jector

In SimCLR [1], the authors experimented with different
architectures of the projector network and found that a sim-
ple 2-layer MLP worked better than a linear layer, which
was better than no projector at all. The SupCon paper did
not experiment with different projector architectures, which
prompted us to do so. Our results (Table 5) show that
projector architecture did not affect classification accuracy
much. Changes from the original framework (2-layer MLP)
accuracy (90.95%) to no projector (90.93%) or a linear pro-
jector (90.57%) were minimal, suggesting the existence of
a projector may not be as important as in a self-supervised
contrastive learning setting.
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Figure 3. 2-dimensional PCA and t-SNE projections of the embed-
dings learned using different loss functions

3.4. Normalization vs no normalization on the en-
coder and projector networks

Although the SupCon paper mentioned in their frame-
work the output of the encoder was normalized to im-
prove the classification accuracy, we found in their Py-
Torch code implementation that the encoder output was
not normalized (only the projector output was normalized).
After experimenting with normalized vs unnormalized en-
coder/projector output, we did not see much effect of the
normalization except when neither of the networks were
normalized we got nan loss (Table 5). The reason for that is
because SupCon uses dot products as the scoring function
and taking the exponential of the dot product may produce
a very large number. Normalizing either the encoder or the
projector output (or using cosine similarity instead of dot
product as the scoring function) is enough to solve the prob-
lem. Although we did not see the importance of projector
normalization in our experiments as [1] has shown, Sec-
tions 3.3 and 3.4 collectively show that SupCon is stable to
changes in projector architecture and encoder/projector nor-
malization (provided using cosine similarity), in line with
the observation that SupCon is less sensitive to a range of
hyperparameters [8].

3.5. Data augmentation vs no augmentation

Finally, we tested the effect of data augmentation on the
performance of SCL. Deep learning for computer vision
tasks relies heavily on data augmentation to avoid overfit-
ting and enhance performance [3, 12, 23]. This is espe-
cially imperative for self-supervised contrastive learning,
where an image needs the augmentation of itself to form
a positive pair during training. The composition of data
augmentations is also critical [1]. In SCL, since label in-
formation is already available and therefore positive pairs
can be formed between images with the same label with-
out augmented data, we tested a framework without data
augmentation. As shown in Table 5, SCL without data aug-
mentation only had an 82.18% classification accuracy, in-
dicating data augmentation is important to SCL. However,
compared to supervised learning (Figure 3 first row, we
copied the t-SNE projection in Figure 4 (left) for compari-
son convenience), SCL without data augmentation showed
more distinctive, tighter clusters of the embeddings, sug-
gesting it may perform better in some tasks based on dis-
tances. Indeed, when we tested a simple k-nearest neighbor
classifier using the embeddings from these two frameworks,
SCL without data augmentation resulted in a higher accu-
racy (83.99% vs 82.42%). Note that this comparison was
unfair to SCL without data augmentation because in super-
vised learning we performed data augmentation. Together
these results suggest although data augmentation can boost
SCL performance, in situations where data augmentation is
more challenging (e.g., tabular data), embeddings learned
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SCL framework modification Accuracy
No projector 90.93
Linear projector 90.57
Normalized encoder, normalized pro-
jector

89.62

Normalized encoder, unnormalized
projector

90.92

Unnormalized encoder, unnormalized
projector

nan loss

Unnormalized encoder, unnormalized
projector, cosine similarity scoring
function

90.5

No Augmentation 82.18

Table 5. Classification accuracy with modified SCL frameworks.
The original framework setting was normalized MLP projector,
unnormalized encoder, and with augmentation. For comparison,
the validation accuracy was 90.95% as shown in Table 4.

Figure 4. 2-dimensional t-SNE projections of the embeddings
learned with supervised learning and SCL without data augmenta-
tion

from SCL even without data augmentation can be more in-
formative than embeddings learned from supervised learn-
ing in tasks involving distance metrics.

4. Discussion

In this work, we explore variations of supervised con-
trastive learning and evaluate the impact on network accu-
racies by the choice of the loss function, adoption of a pro-
jector or a normalization layer, and data augmentation. We
carefully design our experiments and interpret network per-
formance strictly from an empirical standpoint. We success-
fully replicated the SupCon paper and found that SupCon
loss is superior to CE and other contrastive loss functions
with regards to feature representation learning and driving
better classification accuracies. Our new finding is that the
projector network, while found significant in SimCLR [1],
does not affect SupCon performance as much. Normaliza-
tion of the encoder and projector outputs also have small im-

Student Contributed details
Xiaofei Chen Tweaked the original code to run on

Colab (detailed changes see top com-
ments in code). Ran Section 3.2 - 3.5
experiments

Simin Liu Ran Section 3.1 experiments on
SupCon and hyperparameter tuning.
Added code to capture performance
statistics and learning curves (see
main linear w output.py)

Zhikang Dong Implemented loss functions (see
main triplet.py in code)

Yunkai Wang Ran Section 3.1 experiments on CE
supervised learning hyperparameter
tuning

Table 6. Contributions of team members

pact on SupCon, which is slightly different than conclusions
of the SimCLR paper [1]. Finally, while data augmentation
is important for SupCon to enhance feature representation
learning, embeddings learned using SupCon without data
augmentation may still find use cases in situations where
augmenting data is more challenging.

One limitation of our work is that we used the same set
of hyperparameters that is optimal to the baseline networks
throughout the various comparison experiments, mainly due
to limited computational resources. While we think increas-
ing epoch is not likely going to alter our conclusions, it is
possible that the best accuracies are achieved under differ-
ent hyperparameters when comparing different variations of
the network. For example, adding a normalization layer
may warrant a higher learning rate which could have im-
plications for batch size, and hence additional tuning after
introducing the normalization layer in theory may result in
better accuracies.

Another limitation is that we only focused on the best
accuracies across variations. Practically, computational re-
sources may be scarce, and the amount of training may
be limited (as in the case of this project, for example). A
framework still has a practical value if it trains more effi-
ciently or converges faster even if it has a marginally lower
accuracy.

5. Work Division

Contributions of team members are provided in Table 6.
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