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Predicting House Prices Using Textual Information 

Problem Statement 
There are already many tutorials/sample projects about predicting house prices using a variety 
of machine learning regression models (https://www.kaggle.com/c/home-data-for-ml-course). 
However, many of them use the famous Ames or Boston house datasets, which can be 
impractical for real-world house hunters to apply to their price prediction problems for the 
following reasons. First, the Ames dataset has many quality or condition features that are 
impossible for real-world house hunters to gather. Nowadays potential buyers mainly rely on 
websites like Zillow.com and Redfin.com to get basic information about a listing, which is very 
limited compared to the features in the Ames dataset. The Boston dataset, on the other hand, 
only provides aggregate features like average, median, proportion, etc., of the neighborhood. 
Obviously it is not fair to judge an individual house’s price just based on the neighborhood 
aggregate features. Second, those datasets do not contain information about listing prices. It is 
natural for a potential buyer to ask “how much should I add/deduct from the listing price as my 
offer price” when a new listing shows up. 
 
The goal of this project is to address these two problems. A real-world house dataset was 
scraped from Zillow.com, which contains only ~30 quantitative/factual features devoid of 
qualitative/condition features like in the Ames dataset or neighborhood aggregate features like 
in the Boston dataset. A main hypothesis of this project is that the lack of quality/condition 
information on the houses can be supplemented by the raw description accompanied the 
listing, i.e., the “Overview” section on the listing webpage on Zillow.com. These descriptions 
may provide “clues” as to the quality/condition of the houses. For example, “luxurious” or 
“many updates” suggests a higher quality and hence sale price, while “priced-to-sell” or 
“motivated seller” indicates a lower quality and hence sale price, compared to “average” 
houses with the same metrics such as size or year built in the same neighborhood. The dataset 
focuses on the city where I live, Cary, NC, out of my own interest. It is a relatively small town, 
and I envision any difference in neighborhood characteristics should be captured by the zip 
code and the assigned school ratings, which are included in the features scraped from 
Zillow.com.  

Data Source 
All the data of each sold property was scraped from Zillow.com. First, lists of urls were scraped 
from Zillow.com searching for ‘Cary, NC’ and filtering for ‘Sold’ properties. This was done on 
Feb. 18, 2022 and the resultant list contains properties sold 4 months prior to the time when 
the scraping was performed (Nov. 2021 ~ Feb. 2022). Second, data on each property’s 
Zillow.com url was scraped, including the following features: status, number of bedrooms, 
number of bathrooms, living area, address, sold price, sold date, description, listed by, listing 
data, listing price, house type, year built, parking space, lot size, most recent three years tax 
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assessment, elementary, middle, high school assignments and school ratings. This serves as the 
training set. Later on April 18, 2022, I scraped an additional dataset consisting of properties sold 
from Feb. 18 to April 18. This set will be used as the test set. 

Methodology 
1. Data cleaning and feature engineering 
This step includes:  

- Drop the ‘status’ column as it is all ‘Sold’. 
- Convert the ‘soldDate’ and ‘listingDate’ columns to the datetime type. 
- Remove data points with a generic description “(address) is a (type of home) that 

contains (area) sq ft and was built in (year). It contains (number of) bathrooms. This 
home last sold for $(sale price) in (sale date). The Zestimate for this house is $(price). 
The Rent Zestimate for this home is $(price)/mo.” This kind of generic description is of 
no use to extract textual information to build the models and is often associated with 
lot/land sales. 

- Consolidate the ‘houseType’ column to have only three categories: Single Family 
Residence, Townhouse, and Condo. 

- Fix the ‘yearBuilt’ column. Some very new houses did not have this information and 
were filled with wrong information when the data was scraped. 

- Consolidate the ‘parking’ column to have only numeric values indicating the number of 
parking spaces.  

- The ‘lotSize’ column in the original data frame had data in two different units: acres or 
sqft. Convert numbers in acres to sqft. 

- Impute missing data. The ‘bedroom’ and ‘parking’ columns had missing data. Impute 
from ‘living Area’ and ‘houseType’. For missing values in ‘lotSize’, fill in 0 and add an 
additional categorical variable to indicate missingness. 

- Extract zip code from address. 
- Create categorical variables for data points whose listing agent are either Zillow, Redfin, 

Opendoor, or Offerpad – the major iBuyers in business, or Mark Spain, a local flipper. 
- Categorize data points based on the difference between the listing price and the sale 

price. In the training dataset, about 10% of the data points did not have listing prices 
and were removed. 

- One hot encode all categorical string variables with the first column dropped after 
encoding. 
 

Some of the features were only used for exploratory data analysis. The columns that were kept 
to build the regression models are listed below. They represent the “factual data” in Figure 1. 
Column name Explanation 
bedroom Number of bedrooms 
bathroom Number of bathrooms 
livingArea Sqft of the living area 
listingPrice Price the house was listed 
houseType Type of the house (Single house residence, Townhouse, Condo) 
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yearBuilt Year the house was built 
lotSize Size of the lot in sqft 
parking Number of parking spaces 
elementaryRating Rating of the assigned elementary school (1~20) 
middleRating Rating of the assigned middle school (1~10) 
highRating Rating of the assigned high school (1~10) 
zip Zipcode of the address (27511, 27513, 27518, 27519, 27523, 27560, 27607) 

 
2. Natural Language Processing (NLP) 
This is also part of the feature engineering process.  Raw texts from the ‘description’ column 
were processed (converting all characters to lowercase, removing special characters, fixing 
typos and abbreviations, removing stopwords, and lemmatizing) to build a bag-of-words (BoW) 
representation and a term frequency-inverse document frequency (TF-IDF) representation 
focusing only on unigrams. Additionally, a doc2vec (d2v) model was also used to represent each 
description as a vector (explained below). Without going through the NLP steps above, raw 
texts from the ‘description’ column were used to extract length information on word count, 
character count, sentence count, average sentence length, and average word length. Together 
they represent the “textual data” in Figure 1. 

 
Figure 1. Methodology flow chart. 
 
BoW and TF-IDF are two related basic NLP models for representing texts as numerical vectors. 
BoW simply counts how many times a word appears in a document. A collection of documents 
is called a corpus. A collection of words is called a vocabulary. After counting a corpus-
vocabulary matrix can represent the whole corpus with each row presenting a document 
vector, each column representing a word vector, and each entry represent the count of the 
word occurring in the document. TF-IDF builds upon BoW to reflect how important a word is to 
a document in a corpus. In a TF-IDF matrix the count of the word occurring in the document is 
normalized by the count of that word occurring in the whole corpus (term frequency) and the 
number of documents in the corpus that contain that word (inverse document frequency). 
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Thus, TF-IDF makes rare words more prominent and effectively ignores common words. While 
BoW and TF-IDF are popular NLP models due to their simplicity, the main drawbacks include 
high dimensional and sparse data, and lack of semantic and contextual meaning. D2v is an 
extension to the word2vec (w2v) model, which learns to project words into a latent space 
where words similar in meaning have vectors that lie close to each other in space. D2v learns to 
represent each document as a vector such that similar documents will lie close together in 
space. 
 
3. Regression models 
For the regression model to predict the sale prices, I used linear regression with regularization 
such as Lasso and Ridge as well as Random Forest regression. They were chosen because of 
their easy interpretability (linear regression) or robustness (Random Forest). For linear 
regression models with Lasso and Ridge, all data was scaled by a MinMaxScaler, and then mean 
squared error (MSE) of the test dataset was used as a metric for the model performance. The 
comparison was made between using factual data only, factual data concatenated with textual 
length data, factual data concatenated with textual length data and BoW or TF-IDF 
representation (Figure 1 top). Because Lasso is a feature selection tool suitable for high 
dimensional data, I did not perform any dimensionality reduction step. For Random Forest 
regression models, because of the high dimensionality and sparsity of the BoW and TF-IDF 
matrices, an additional step to reduce the dimensionality of the data was needed. Here I chose 
mutual information (MI) to select features (words) that the target (sale price) is more 
dependent on. MI is a measure of dependence or “mutual dependence” between two random 
variables. It measures the average reduction in uncertainty about x that results from learning 
the value of y; in other words, the average amount of information that x conveys about y. 
Alternatively, a lower dimensional matrix was built using the d2v model to represent the raw 
descriptions (Figure 1 bottom). 

Evaluation and Final Results 
1. Exploratory data analysis 
Initially I was concerned about the high rise of real estate properties, despite the short period 
of time frame, would require detrending of the data. However, the median sale price remained 
stationary during the period of Nov. 2021 to Feb. 2022 (training set, Figure 2 left) and Feb. 
2022, to Apr. 2022 (test set, Figure 2 right), therefore there is no need to detrend the data. 
 
Figure 3 shows the distribution of sale prices for the training and test datasets. As expected, 
both exhibit right skewed distributions.  The test dataset also appears to have a second mode in 
the higher price region. 
 
Sale-to-list ratio is a metric looking at the final sale price divided by the listing price expressed 
as a percentage. Figure 4 shows my local market has been very hot. A majority of the houses 
were sold above listing price, even more so in most recent months (Figure 4 right).  
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Figure 2. Median sale price over the period of the training set (left) and test set (right). 
 

 
Figure 3. Sale price distribution in the training and test datasets. 
 

 
Figure 4. Distribution of the sale-to-list ratio in the training and test datasets. 
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The analysis on textual length shows mostly similar density distributions between the houses 
that were sold higher than the listing prices and the ones that were not, in both the training 
and test datasets, except for the sentence count (sentCount) and average sentence length 
(avgSentLength) measurements, which appear to be higher for the houses that were sold 
higher than the listing prices. This is an interesting observation, suggesting that houses that 
were sold higher are associated with descriptions with longer and more sentences. 

 
Figure 5. Length analysis in word count (wordCount), character count (charCount), sentence 
count (sentCount), average word length (avgWordLength), average sentence length 
(avgSentLength) of the raw description texts, comparing between the houses that were sold 
higher than listing prices and the ones that were not. 
 
The word cloud generated from the BoW model shows the most popular words in the training 
dataset (Figure 6). Many of them are nouns describing parts of the house, like “kitchen”, 
“bath”, and “dining”. Some are qualitative adjectives, such as “new”, “large”, and “perfect”.  
Some are related to the location, for example, “cary”, “rtp”, and “downtown”. 
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Figure 6. Word cloud of the most frequent 100 words in the training data set. 
 
2. Linear regression models for sale price prediction 
After the final cleanup, the factual data has 19 features. The textual information engineered 
from the raw description texts includes the length data of 5 features, and the BoW and TF-IDF 
matrices each having a vocabulary of 1531 words. The training set has 544 data points and the 
test set has 267 data points.  As outlined in Figure 1, different inputs were subjected first to 
MinMaxScaler and then linear regression with regularization (Ridge or Lasso). The fitted model 
using the training data was then used to predict the test data, and the performance of the 
model was measured by the MSE of the test set, shown below. The results show that Lasso 
performed better than Ridge using all kinds of inputs. Adding textual length data improved only 
the Ridge model not the Lasso model. Further adding BoW or TF-IDF representation caused a 
huge deterioration in the performance of the Ridge model, due to the high dimensionality of 
the data and the fact that Ridge cannot perform feature selection. However, most importantly, 
including BoW or TF-IDF in the input improved the Lasso model about 9%. 
Input data Best regularization for Ridge Test error (MSE) 
factual data alpha=0.1 4615442884 
factual data + textual length alpha=0.1 4464423559 
factual data + textual length + BoW alpha=0.1 33744548197 
factual data + textual length + TF-IDF alpha=0.1 31858918802 
 
Input data Best regularization for Lasso Test error (MSE) 
factual data alpha=1400 4383021015 
factual data + textual length alpha=1400 4383020955 
factual data + textual length + BoW alpha=400 4027687704 
factual data + textual length + TF-IDF alpha=200 4077083615 
 
Linear regression coefficients represent the magnitude and direction of the correlations 
between each feature and the target. As expected, the listing price has the largest coefficient in 
all of the models. Figure 7 left shows the non-zero coefficients for the Lasso model using only 
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the factual data. To avoid dwarfing all other coefficients, the ‘listingPrice’ coefficient was not 
included in subsequent plots. When BoW was included in the input, Lasso picked up a few 
words that are positively correlated with the sale price (Figure 7 middle, features with 
coefficients less than 10000 in magnitude were excluded from the plot.). Among them, 
“extensive” has the largest magnitude. In the context of real estate listing, “extensive” is often 
used to describe flooring, molding, landscaping, trim work, updates, etc. It makes sense that a 
house being described as “extensive” can indeed have a higher quality. Other interesting words 
picked out by Lasso include “screen” and “porch” (suggesting a screened porch is a desirable 
feature of a house), “price” (as in “priced to sell”, “price reduced”, or “new price”, negatively 
correlated with the sale price). Other words did not make much sense, like “sq”, “stair”, “2015”, 
which emphasizes the need for representing a document with more sophisticated models as 
well as careful preprocessing of raw texts in NLP. 
 
Using TF-IDF representation in the input also resulted in similar features being picked out by 
Lasso (Figure 7 right, features with coefficients less than 20000 in magnitude were excluded 
from the plot.). 

 
Figure 7. Coefficients of the Lasso models using different inputs. ‘listingPrice’ coefficient was 
excluded in the middle and right plots to avoid dwarfing other coefficients. In the middle plot, 
only coefficients with magnitude greater than 10000 are shown. In the right plot, only 
coefficients with magnitude greater than 20000 are shown. 
 
3. Random Forest regression models for sale price prediction 
For Random Forest models, I used a similar work flow, tuning for the best parameter with the 
training data and then using the best model to predict the test data. This time, simply adding 
the textual length data improved the performance of the model. However, with BoW or TF-IDF 
representation, not only the performance is worse than just using the factual data only, the 
running time is significantly longer due to the high dimensionality of the data. To reduce 
dimensionality, I used MI to select most relevant features (words). With BoW, I found a 
vocabulary size of 70 is the best and produced a lower test error than without BoW. With TF-
IDF, the best vocabulary size was also found to be 70 but there was no improvement using the 
reduced dimension matrix. Another way of reducing the dimensionality of the data is to build a 
low dimensional matrix to begin with. To do that, I used the d2v model, representing each 
description with a vector of an assigned size. I found the vector size of 30 resulted in the best 
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performance of the subsequent Random Forest model; however, the test error did not 
decrease from the input data without the vector representation. Note that due to the time and 
resource limit, for all the Random Forest models I did not do a full grid search for the best 
parameters and the models could certainly benefit from doing that. 
Input data Best parameter for Random Forest Test error (MSE) 
factual data max_leaf_nodes=170 5792442276 
factual data + textual length max_leaf_nodes=180 4505426510 
factual data + textual length + 
BoW 

max_leaf_nodes=120 6174061229 

factual data + textual length + 
TF-IDF 

max_leaf_nodes=230 6106529351 

factual data + textual length + 
BoW (reduced dimension) 

best 70 vocabulary with 
max_leaf_nodes=120 

4378652422 

factual data + textual length + 
TF-IDF (reduced dimension) 

best 70 vocabulary with 
max_leaf_nodes=230 

4552982491 

factual data + textual length + 
d2v 

vector_size=30 with 
max_leaf_nodes=250 

5031805707 

 
To gain insights into the importance of each features in the Random Forest models, I used 
permutation importance, which calculates the increase in MSE (estimated with out-of-bag 
samples) as a result of features being permuted (values randomly shuffled). This procedure 
breaks the relationship between the feature and the target, thus the increase in MSE is 
indicative of how much the model depends on the feature. The higher the number, the more 
important the feature. Again, as expected, the ‘listingPrice’ feature dwarfed all other features 
(Figure 8). Interestingly, in the model with the textual length data included in the input, average 
sentence length (avgSentLength) was the second most important feature (Figure 8 right), in line 
with the observation that houses that were sold higher than the listing price tend to have 
higher sentence count and higher average sentence length (Figure 5). 
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Figure 8. Permutation importance of features in the Random Forest models using different 
inputs. 

Discussion and conclusions 
In this project, I employed different machine learning techniques to build regression models to 
predict house sale prices. The novelty of my project lies in the inclusion of property descriptions 
as the predictors of the response. For machine learning models to understand the textual 
information, the information must be presented as numbers to the computers. In this project I 
used simple BoW and TF-IDF models as well as analysis on the length of words and sentences to 
represent the textual information. In several occasions, models including the textual 
information outperformed models without. The best MSE of my models is about 4x109, which 
means the RMSE is about 63000. For a 3-million-dollar house, this is only a 2% error. But for a 
300K dollar house, this constitutes a 20% error. While at this stage my models certainly cannot 
compete with Zillow’s Zestimate, this project serves as a proof of concept for using textual 
information to predict house prices.  
 
The main hurdle of my models is to preserve the semantic and contextual meanings of the 
words in a paragraph, which BoW and TF-IDF ignore. A d2v embedding similar to w2v 
embedding was used to build a low dimensionality document embedding, although it did not 
help improve the Random Forest model. In the future more sophisticated word embedding 
models such as GloVe or BERT could be used to detect more detailed nuances in those 
description texts. 


